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/ SIMULATION OF DISLOCATION AND TRANSFORMATION PLASTICITY IN SHAPE 
MEMORY ALLOYS 

Summary of results 

There has been developed a model of deformation of shape memory alloys based on 
the methodology of the background microstructural approach proposed by Prof. 
V.A.Likhachev and named the structure-analytical theory of strength. Two scales of plastic 
deformation are modeled. The first is the micro-plastic deformation caused by the interphase 
stresses arising at the accommodation of martensite; the second is the active plastic 
deformation, produced by external mechanical loading. Constitutive equations for alloys of 
TiNi- and FeMnSi-types have been formulated and computer programs composed. The model 
can describe such phenomena as the incompleteness of the strain recovery at thermocycles, 
plasric deformation of austenite, repeated two-way shape memory effect, produced both by 
micro-plastic and macro-plastic deformation. Calculated dependencies are in a good 
qualitative agreement with the available experimental data. 

Publications 

The results obtained within the frames of the project have been published in the 
following works. 

[1 *] Evard M.E., Volkov A. E. Modeling of strain accumulation and recovery due to 
fcc-hcp transformation at thermocycles // Preprints of 2nd Int. workshop on new approaches to 
hi-tech materials (8 - 12 June 1998, St.Petersburg). St.Petersburg, 1998. F3. (The full text of 
the article is published in Proceedings of SPIE) 

[2*] Miller D., Lagoudas D., Evard M.E., Volkov A. E. Influence of plastic strain on 
the shape memory effect of NiTi wires // Proceedings of Plasticity 99: The Seventh 
International Symposium on Plasticity and its Current Applications, edited by Akhtar S 
Khan, 1998, pp. 247-250. 

[3*] Evard M.E., Volkov A. E. Modeling of martensite accomodation effect on 
mechanical behavior of shape memory alloys // J. Engn. Mater, and Technology. 1999, 

[4*] Evard M.E.,. Volkov A. E. A theoretical study of the plastic deformation in 
titanium-mckel shape memory alloy // Proceedings of the international symposium- Shape 
Memory Alloys: Fundamentals, Modeling and Industrial Applications, edited by F Trochu 
V. Brailovski, A. Galibos, 1999, pp. 177 - 183. 

Introduction. 

At present the problem of modelling of the mechanical behaviour of shape memory 
alloys (SMAs) becomes more and more significant because many new applications in various 
fields of technology and medicine [1,3] are being developed. A computer simulation helps to 
check the workability of a device, optimize its parameters. In 1980s - 1990s there were 
developed many theoretical approaches which can describe the mechanical behaviour of 
SMAs. They may be divided into two groups. The first consists of phenomenological 
macroscopic theories  [4-8] which establish a relation between stress,  strain   internal 



parameters and their rates mainly on the grounds of observations of their mechanical 
behaviour. The advantages of such theories are their compactness, a comparatively easy 
procedure of determining of the material constants, relatively small amounts of computation. 
The shortcoming is their inter- or extra- polation character, less predictive ability. The other 
group is formed by microstructural theories [9-12]. They are based on crystallographic and 
physical data about the structure of the material and mechanisms of deformation and take into 
account geometrical and physical peculiarities of deformation mechanisms. This allows to 
develop rheological models invariant of the external loading, to make predictions about the 
behaviour of a particular alloy under the action of a complex thermomechanical load most 
accurately and physically grounded. At the same time in such theories it is more difficult to 
calibrate material constants, big computation resources are required and this impedes their 
use for.solving boundary-value problems. Still the necessity to describe different regimes of 
an SMA application in the frames of one general physically justified approach makes the use 
of micro-structural theories very attractive. In the present project a background 
microstructural approach developed by V.A.Likhachev and named "structure-analytical 
theory of strength" is used as the guideline and an attempt is made of its expansion to 
loadings causing irreversible plastic deformations. 

Basic constitutive equations of structure-analytical theory of strength 

The structure-analytical theory of strength [9,10] assumes that the main characteristic of a 
crystal, determining many of its properties and particularly deformation mechanisms, is the 
crystallographic orientation to which the orientation of slip systems is related. A polycrystal 
consists of grains differing by such orientations, therefore to obtain macro deformation it is 
reasonable to use orientation averaging of deformations of grains. This averaging may be 
supplemented with the statistical one on such parameters as the width of thermomechanical 
hysteresis. The averaging procedure is organized in a way to reflect the grain structure of the 
material [13]. In each of l,2,...,©,...,/3 grains of the representative volume of a 
polycrystalline body the deformation related to the crystallographic basis of that grain is 
characterized by a matrix   fir(o}) . The macroscopic phase strain   ^M ig obtained by 

reducing matrices fir(a>) to the laboratory basis and averaging on all grains: 

eu = if{co)Rme
G'{a>)R-J, (1) 

where Rm is the rotation matrix transforming the laboratory basis into the basis of grain a 
and f(co) is the volume fraction of this grain. The volume fraction $M of martensite in a 
grain is calculated by the same averaging procedure: 

&M = Zf(co)0G'-(u)), (2) 

On the total in each grain there can exist 1,...,«,..., N variants of martensite. A variant is 
characterised by quantity 0n, such that (1/N)0n is its volume fraction in the grain, and 
lattice deformation Dn by which it was obtained from the parent phase. If the matrix D for 
one of the variants is known, the corresponding matrices Dn for other variants can be found 
by rotating D by operators Pn belonging to the cube symmetry group: 

Dn=PnDPn-
1,   n = l,...,N. (3) 



In each grain the average phase strain ^h accumulated due to lattice deformation in the 
course of the transformation related to the crystallographic basis and the volume fraction of 
martensite are equal to 

sPh=lt^Dn, (4) 

^^ix* (5) 
For simplicity 0Pr, 0n, e ph, etc. here and further are written instead of <X@r(co), 0n(a>), 
£Ph(co), etc. 
To formulate the law of variation of 0n we consider the thermodynamic equilibrium of the 
two-phase austenite-martensite system. We introduce the thermodynamic force Fn* which is 
the difference of specific Gibbs energies of the n-th variant of martensite and austenite. An 
approximate expression for Fn* is 

Frt-iTrf-TJiq/r,), with Tn* = T+ (TJqJvDm (6) 

where Tn is the effective temperature, T0 is the temperature of the equilibrium of the two 
phases when there is no stress, qo is the latent heat (qo<0), t is the stress and double dot 
sign denotes the double contraction of tensors. It is generally assumed that a moving interface 
overcomes a resistance, due to the energy of martensite crystal nucleation and other barriers. 
Here we call it friction force F fr and assume that it has a constant absolute value and 
opposes the movement of a phase boundary. Besides friction, there appears a counter-force 
Fn due to the interaction between martensite crystals and austenite matrix. We postulate as 

the first approximation that this force can be calculated as: 

FrTMm ®n (7) 
where fjm is a constant. 

At the thermodynamic equilibrium there is the balance of forces: 

Fnt = Fn±Ffr, (8) 

where plus sign must be taken for the direct and minus — for the reverse transformation. 
Constants   Ffi"   and   ftm    can  be  determined  from  the  kinetics  of the  martensitic 
transformation when no stress is applied  and they are:  Ffi" = (-qoHAf - Ms)/{Af + Ms), 
Mm = {-qo)-2{Ms -Mfi/{Af+ Ms) ,   Mf, Ms, As, Af being as usual the characteristic 
temperatures of the transformation. From (7) and (8) differential d<Pn can easily be found: 

dOn= dFnt/vm . (9) 

Initial conditions are based on the fact that at temperatures above ,4/and in stress-free 
state no micro deformations have begun and for all martensite variants we have 0n= 0. 



Theoretical studies of different variants of the structure-analytical model [11,13] has 
shown the capability of this approach to correctly describe the basic features of SMA 
behaviour at different regimes of thermal and mechanical loading. 

Modelling of martensite accomodation effect on mechanical behavior of TiNi type shape 
memory alloys [3*] 

The first step to expand the field of applicability of the model was to take into account 
micro plastic deformation and stress produced by the accommodation of martensite [14] 
which plays a big role in the pecularities of SMA deformation. In particular, it has been 
shown that accomodation processes are connected with such phenomena as the decrease of 
the phase yield limit at cyclic loading [15]. They are also responsible for such phenomena as 
incomplete recovery of strain, strain accumulation at thermocycling and repeated two-way 
shape memory effect. 

To describe the deformation produced by the accommodation of martensite consider 
equation (4) as a decomposition of the strain s & relative to some generalized basis {Dn} 
with components 0n and which we therefore shall interprete as the measures of strain. As 
the micro plastic strain smP caused by the accommodation of martensite is connected with 
the same martensite crystals as the phase strain, we postulate that e mP can be expressed in 
the form similar to (4). 

£mp = jrt^P
ttD„ (10) 

where fyp is the measure of the micro plastic strain produced at the accommodation of 
crystals, belonging to the «-th variant of martensite in a given grain. 

As the accommodation leads to a partial relaxation of interphase stresses, we assume that 
the resistance force F„ decreases by the quantity am ®yP (in [14] it was taken fim=am ). 
So we must change equation (7) for resistance force to 

Fn=Mm®n-amFrP (11) 

We note that after (11) has been accepted instead of (7), formula jum given above is no 
more valid as the kinetics of the transformation is different when martensite accomodation 
takes place. 

The evolution equation for OyP is obtained from a hypothesis that differentials d®yP 
and dF„ are related in the same way as the differentials of strain and stress in the classical 
flow theory with linear hardening. Then one can easily show that when the force F„ exceeds 
some yield limit Fy? 

dOrP = k d0n H(\ F„\ -FJ) H(dFnsignFn), (i2) 

where H is the function of Heaviside, k is the coefficient characterising hardening. If k= 0 
there is no micro plasticity, if k -> 1 there is ideal micro plasticity without hardening. As the 
counter-force Fn  grows (decreases) only at the growth (decrease) of martensite, which in its 



turn can occur only at the growth (decay) of the thermodynamic force Fn
f, we have 

sign(ü^„) = sign(dFnt) and H(dFnsignF„)= H{dFnt signFw).Then 

d®n = dFn*/ { ßm [1- kH{ | Fn | -F^)H{dFnt signF«)]} (13) 

When micro plastic deformation is in progress, the yield limit grows at the same rate as the 
force Fy} whose increment is equal to that of the thermodynamic force. 

Initial conditions are based on the fact that at temperatures above ^yand in stress-free 
state no micro deformations have begun and for all martensite variants we have Fy? = F(jy = 
const, Off = 0n= 0. 

When micro plasticity is taken into account, the strain in a grain is calculated as 

+*-' = ^Z4.K.+<p-)' e8r = sph 

71 = 1 

(12) 

and the total macro strain is delivered by averaging (1). For numerical calculations the 
relations given above can be reduced to a system of n-N ordinary differential equations. 

Examples of modelling 
Deformation simulation was carried out for an object consisting of 120 grains of different 
pseudo-random orientations. The following values of material constants have been used- Mt 
= 280 K, Ms = 300 K, As = 340 K, Af= 360 K, T0 = 330 K, q0 = -150 MJ/m3. The value 
F(jy - 13 MPa has been chosen in such a way that microplasticity could take place at cooling 
of specimen stressed by 30 MPa. Parameter k has been varied. Calculations have been 
performed for cases of pure shear and uniaxial tension. Heat expansion has not been taken 
into account. Microplastic deformation at accommodation of martensite strongly influences 
mechanical behavior of shape memory alloys and especially at cyclic variations of 
temperature or stress. Because of this we have chosen to model strain accumulation and 
recovery by a specimen loaded with a constant stress of 100 MPa and subjected to 
temperature cycles through the full interval of the phase transformation. Fig.l presents the 
kinetics of this process for k= 0.4. Maximum strain saturates, strain unrecovered in a cycle 
decreases and the hysteresis loop stabilizes in approximately 20 cycles (Fig.2). 

/SO 

Fig.l Strain vs. temperature dependence 
at thermocycling in the full interval of 
the martensitic transformation under the 
stress of 100 MPa. Numerals on the plot 
indicate numbers of cycles. 

400T.K 



smax,% 
k=0.9 

8- 

fc=0.7 

6- ̂    A 

k=0.4 

4- ̂ -^^ k=0.2 

Ö 10 2b 30 4b 50 N 

a) b) 
Fig.2. Calculated strain at a temperature below Mf (a) and the unrecovery of the strain (b) in 
an N-th cycle. Thermal cycling was carried out through the full interval of the martensitic 
transformation under the stress of 100 MPa symbols in fig.2b correspond to the values of k, 
given in fig.2a. 

An important place in the studies of the work ability of SMAs is occupied by the following 
thermomechanical cycle: cooling of a sample from austenite to martensite under some load P, 
application of an additional load Q, heating to a temperature higher than A/and removing the 
additional load Q to have the initial load P. Figures 3, 4 show the result of such numerical 
experiment when P = 100 MPa, Q = 200 MPa. Stabilization of the loop in this case is also 
achieved in about 20 cycles. Strain unrecovered in a cycle becomes small and almost 
constant. The maximum strain accumulated up to the JV-th cycle slowly grows, these results 
are in a good agreement with the data of the direct experiment [21]. An application of an 
additional load Q at a low temperature causes no unelastic strain as the stress produced by 
P+Q is insufficient for the reorientation of martensite. As the temperature rises, the 
reorientation limit stress decreases. At some temperature lower that Afihe reorientation of 
martensite starts. Then a typical "hump" appears on the strain recovery curves in fig.3 

550 T,K 

Fig. 3. Calculated strain versus 
temperature diagram at thermocycles 
with cooling under the stress 100 
MPa and heating under 300 MPa 
(torsion). Numerals indicate numbers 
of cycles. 
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a) b) 
Fig. 4. Strain unrecovery (a) and maximum strain (b) as function of the number of 

thermocycles depicted in fig. 3. 

One of the properties of SMAs which until now could not be satisfactorily described in the 
scheme of the structure-analytical model is the repeated two-way shape memory formed by 
cooling under a stress or by active straining in martensite.. 

6,% 
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Fig. 5. Calculated strain versus temperature Fig. 6. Strain versus temperature diagram of 
diagram at cooling and heating under 100 MPa active deformation of a sample in martensite 
(curve 1), unloading and a stress-free state and unloading (curve 1), heating (curve 
thermocycle(curve2). 2) and subsequent stress-free thermocycle 

(curve3). 

The mechanism of this phenomena may lie in the appearance of micro stress fields as the 
result of the incompatible plastic strain accompanying the growth of martensite crystals 
Figures 5 and 6 present the results of modelling of this effect. The model demonstrates a 
reversible strain variation which corresponds to experimental data [16]. According to existing 
notions [17] plastic deformation at martensite accommodation plays an important role in 
training of the material by thermocycling under a load, fatigue damages, the formation of 
eigenstresses responsible for the adaptation of the material and formation of the repeated two- 
way shape memory. The last thesis is confirmed by the fact that the repeated shape memory 



appears only after a strong enough straining of the object by a load exceeding a critical level 
when there is no complete strain recovery. At the same time all these considerations were 
mostly pure qualitative and did not allow a passage to engineering calculations. The proposed 
model sets a formal ground for such notions and the agreement of calculated results with 
experimental ones confirms the validity of this approach. As the result it becomes possible to 
model thermocyclic training and repeated two-way shape memory. Calibration of the material 
constants allows to obtain valid results for specific alloys. 

Modelling of shape memory alloys with fcc-hcp transformation (of FeMnSi type) [1*] 

One of the specific features of fcc<->hcp transformations is the multi-variance of both 
direct and reverse transformations [16,18]. The result of it is that specimens loaded by a 
constant stress experience deformation when they undergo either of the transformations. 
Thus, considerable strain can be accumulated at thermal cycles. Large part of this strain is 
reversible and can be recovered at further cycles after the stress is removed [19]. This fact 
suggests that the strain is due to transformations rather than to dislocation movement. Strain 
accumulation at thermocycles can be described by the structure-analytical theory of strength 
which is distinguished by two ideas: (1) the existence of limits of the size of growing 
martensite crystals and (2) the possibility that the deformation of a martensite crystal at the 
reverse transformation is not, in general, opposite to the deformation which this crystal has 
undergone at the direct transformation. The model based on only these two features predicts 
absolutely symmetrical behaviour of a loaded sample in heating and in cooling. An attempt to 
account for an asymmetry has been made in [20]. However, approaches [10,20] did not take 
into account microplastic strain arising at the growth of martensite crystals and leading to a 
partial accommodation of martensite and relaxation of interphase stresses. Because of this 
drawback the stabilization of the deformation of the model material occurs in 3 - 5 cycles 
rather than in several dozens as in an actual experiment. Strain recovery at thermal cycles 
without stress can not be described either. The present work accounts both for symmetrical 
features of fee <-» hep transformations and microplastic deformation. 

At fcc->hcp_transformation one of {lll}fcc planes becomes (0001 )hcp by one of three 

shears l/6< 112 >fcc on each second plane making up N= 12 variants of transformation 
strain tensor Dn and martensite quantities d>„ . At the reverse transformation each of three 
shears 

l/3< 1120 >hcp restores the initial orientation of austenite. Thus all variants can be divided 
into four triplets (zones) with parameters 

**=\ IX,  ^=1,2,3,4, (3) 
»n=3z-2 

characterising the amount of martensite belonging to a zone, (1/4) &z being the volume 
fraction of martensite of this zone. Parameters &n themselves do not have physical meaning 
of martensite amounts as deformations Dn belonging to one zone produce martensite of the 
same orientation. Still 0n play the role of measures of the phase deformation. Total 
deformation of a grain caused by transformation and accommodation of martensite is 
presented by the same formula (12). Evolution equations for  &n is obtained by the same 



considerations as for TiNi type alloys. The difference is that two extra conditions of 
transformation finish exist: direct transformation can not occur to make the volume fraction 
of martensite in a grain O^ >1; martensite fraction in a zone (1/4) Oz can not become less 
than zero. Summarizing all this we arrive at a final form of the evolution equation: 

+ 
G _h_ 

[H(lFn|-Fn
y)H(-^>^Fn) + H(Fn^ -|Fn|)pFn + 

H(|Fn | - FB' )H(<n£stgnFa )dF„ |H(I - 0*)H(<PZ) , (11) 

For numerical simulations the initial value of the yield limit (^=10 MPa) was chosen 
such that microplasticity in cooling (and subsequent unrecovered strain in heating) took place 
when the stress was as small as 10 MPa. The value of the microplasticity module hm was 
varied. Fig.7 presents the calculated by this model (for hm=2 MPa) diagram of strain 
evolution at thermal cycles. By adjusting of module hm one can obtain different rates of 
thermocyclic strain production (fig.8). Simulations have also shown a decrease of Ms 
temperature. 
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Fig. 7. Strain dependence on 
temperature at thermal cycles in the 
range 220 - 620 K under a constant 
stress of 50 MPa (calculation). 

Fig.8. Maximum strain 
accumulated by a model sample in N 
thermal cycles under stress 50 MPa for 
different values of module hm: 2 (1), 5 
(2), 7 (3), 65 (4) MPa. 
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Appearance of microplastic strain gives rise to some internal stress which is obviously 
the cause of the experimentally observed [21] partial strain recovery at subsequent thermal 
cycles in an unloaded specimen. Some confirmation to this statement is supplied by the result 
of modelling shown in fig.9. Being very intensive for some first cycles, the recovery in a 
cycle then decreases. In previous works this effect was not possible to describe by means of 
the structure-analytical model. 

e,% Fig.9. Strain dependence on 
temperature at thermal cycles without 
stress after preliminary treatment shown 
in fig. 7. 
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In conclusion we may state that a satisfactory simulation of the cyclic mechanical 
behavior of alloys with fccohcp transformations is possible only with an account of the 
accommodation of martensite and microplastic deformation. 

Modelling of active plastic deformation in Titanium-nickel shape memory alloy [4*] 

In many applications there may occur loading which causes an active plastic 
deformation. Besides, plastic deformation influences the quantitative characteristics and 
kinetics of martensitic non-elasticity giving way to the formation of such specific effects as 
the two-way shape memory and training of the material at cyclic temperature variations 
[16,21,22]. Preliminary thermomechanical treatment allows to change purposefully the 
functional-mechanical properties of SMA. That is why big attention is paid to the 
development of models allowing to calculate plastic deformation and predict its influence. 
Several works are devoted to the calculation of the dislocation plasticity arising at the growth 
of martensite crystals inside the austenitic matrix. The principles of the calculation of the 
plastic deformation due to dislocation slip have been formulated in the book [9]. In the 
present work it is developed a model of the plastic deformation of a polycrystalline TiNi 
specimen using the general ideas of this book. 

The mathematical object is an austenitic polycrystal consisting of grains numbered 1, 
2,..., (a,..., Q, each grain having several slip systems. Any slip plane may be referred to one 
of 1, 2,..., m,..., M types and 1, 2,..., k,..., Km crystallographically equivalent planes belong 
to each type. These planes may be obtained from one of them by rotations belonging to the 
point symmetry group of cubic lattice. 

Athermal plastic deformation efa in ä grain is the sum of the deformations on each of the 
slip planes in this grain: 



M   Km 

^»ZE*:«*". 0) 
m=\ k=\ 

where s^ m' is the referred to the laboratory basis athermal deformation produced by slip 
on the &-th plane of the m-th type. 
Let erg?" be the effective stress applied to a grain. Then the stress acting on the plane (m, k) 
has shear components which may be written as: 

-(».*) _   Am,k) Am,k)    gr (m,k) _   .(«,*) j(m,k)    gr 
T31 Ap3      Aq\        Gpq, ^32 ~Ap3      Aql       ^ pq , (2) 

where Apq is the rotation matrix transferring the crystallographic basis of the grain co into 
the crystallographic basis of the (m, k) plane. We assume that dislocation slip starts when the 
intensity of the tangential stress on the slip plane 

T 
<(m,k) _ 
T 

reaches its critical value xs(m'k) : 

^((^•J,)2+(*")2) 

jr(">,k) _ Ts(m,k) 

Due to the tangential stress 

(3) 

(4) 

^^^(S^+Ö^^ + T^S^+Ö^). (5) 

a shear strain is produces, having the components 

na(m,k)  _]_f(m,k)  T31 r\a (m,k)  _   1 -r(m.k)  T32 
P31       ~2   ß       T '       Pn      ~2   ß      ~T~' (6) 

nrV.o»>  r(m.*) _    /oRa (m,k)na (m,k)    .    ^     . . „ , 
wnere i ß      ~^Vpq     Ppq        is the intensity of the shear strain rate tensor on the plane 
(m, k). 

is We assume that the flow stress %s(m'k) is the sum of an equilibrium value xs(m)eq, which „ 
the same for all planes of the given m-th type, and additions responsible for the deformation 
xs{m,k)def and latent hardening: 

%s (m,k)  _ ^s (m,k) eq +xs (m,k) def       Q   V">     , (m,k) def 

m.k 
(7) 

where CT is an empirical constant and the last term is due to the latent hardening connected 
with the possibility of simultaneous plastic deformation on several slip planes. This formula 
does not take into account the strain rate dependence of the flow stress. 

The component xs{m'k)eq we shall write as follows: 



x'(-.*)«» = T(p-)_K(-)(7',fp
(-'*))r> (8) 

where K     (7\rp      )  is an empirical function specifying the temperature dependence and 

T^"
)
 may be a constant or a distributed quantity with some density i|/(m) (T(OT)

 ). 
To calculate the evolution of the deformation hardening component of the flow stress 

Xs m' e we assume that the hardening modulus h(m) depends linearly on the amount of 

shear on the plane so that its rate Vs ^m,k) def is equal to h{m)tjm'k). Besides hardening 
there may take place some recovery processes which lead to the decrease of the flow stress 
with the rate which has an Arrenius-type dependency on temperature and that of power-type 
on the flow stress itself. Thus 

x'^M = h{m)tlm'k) -q(T)(Ts(m'k)def)m<s, (9) 

(    U   ) 
where q(T) = rm exp —r~  ; Um , «t, are empirical constants, kß is the Boltsmann 

V     KBL J 

constant. 
From (4) we obtain that in the plastic state it holds: 

f(m,k) _xs(m)eq + ^s (m,k) def       Q  y    S (m,k) def 

m,k 
(10) 

Taking time derivative of (10), using (8) and (9) and neglecting with the latent hardening 
addition to the flow stress we obtain that in the plastic flow state 

-, »    d%s{m)eq •    8xs(m)eq .. 
T 3T dt°">k)    ß p      ~^r)(x )    .   (11) 

or after some transformations 

PP.t™)?™ + him)t^k) = f^k)-K(m\T,t^k))f + q(T)(xs(m'k)def)^ . (12) 

ForP(r,fp
(^) = P(D,   K<">(r,f<"*>) = K<">= const equation(12)becomes: 

P(T)f^k) +h{m)tlm'k) = t^k)-xs
Q
{m'k), (13) 

where 

f;w,=r(',f-?(^(r,w^)"''. (13a) 



Assuming moreover in (13) P(T) = 0, and using Heaviside's functions to formulate the 
flow condition (4) and the second flow condition of the growth of the difference 

t      ~~ ~o       , we arrive at the system of equations 

s(m,k)def _ r,(m)f^(m,k) = h{m)Tlm'k) - q{T){xs (M) def)m*s 
(14) 

which solution allows to find the rate of athermal plastic deformation produced by the action 
of a given slip system. The deformation of the whole grain we get by taking the sum (1), and 
the macroscopic plastic deformation — by neutralization on all the grains constituting the 
poly crystal: 

za = ^tR«<aK\ 
0)=1 

(15) 

where Ra is the rotation matrix transforming the laboratory basis into the crystallographic one 
of the grain co. 

Results of modeling 

The approach described above has been applied to model plastic deformation of 
austenitic titanium-nickel alloy. According to the investigations of plasticity properties of 
titanium nickelide monocrystals [23] dislocation slip occurres on the crystallographic planes 
of two types namely {110} and {100}. To clear out the contribution of the number of active 
slip systems there have been carried out calculations of stress-strain diagrams of a polycrystal 
for the cases when only one or both of these system were active. Yield stress recovery 
processes have been neglected ( q(T) = 0 ), yield limits and hardening moduli have been 
taken equal for both slip systems. Typical result is presented in fig. 10. 

{100}     {no} 

Fig.10. Calculated stress - strain diagrams of 
a model polycrystal, consisting of 20 grains 
when slip occurred on {100}, {110} and both 
of these planes. 

Variation of the hardening modulus and yield stress allowed to approximate different 
experimental curves. It may be concluded that polycrystal plastic properties do not depend 
strongly on the number and orientation of cristallographic slip planes. The situation is 



different for monocrystals. Experimental data presented in the work [23] shows that both 
yield limits and hardening moduli strongly differ and are much bigger for a slip on {110} 
planes. Rater good agreement with the experiment the present model shows whit the 

following values of parameters: for planes {100} Xs eq = 70 MPa , h(m) = 800 MPa and for 

planes {110} Xs eq = 320 MPa , h(™) = 3000 MPa (fig.ll). At the same time there is no 
agreement when the tensile axis has an orientation <011> probably because of the anisotropy 
of the flow stress for different directions in the slip plane which was not accounted in this 
work. 
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Fig.ll .Experimental (1,2) [23] and calculated 
(1\2') tensile diagrams of titanium nickelide 
monocrystals with the tensile axis oriented 
along <100> (curves 1,1') and <110> 
(curves 2,2') 

Plastic deformation when produced in austenitic state of an SMA such as TiNi can be the 
cause of the reversible shape change when a specimen is thermocycled across the interval of 
the phase transformations. This phenomenon may be explained by the action of special 
intergranular stresses which appear in a polycrystal because of the plastic deformation 
anisotropy. An estimation calculation of the mean values of these stresses added to the 
approach described above shows a good qualitative agreement with the experiment (fig. 12.). 
These results are soon to be published. 
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Fig. 12    Strain variation at thermocycling of a TiNi specimen after an active plastic 
deformation at 600K: 



a - calculation; b - fragment of fig. 12a belonging under the transformation temperature 
interval compared with experimental data. 

These results show that the structure-analytical model of strength outlined by V.A.Likhachev 
[9] is a good tool to describe the plastic behaviour of specific crystalline materials provided 
the mechanism of plasticity (slip planes, critical stresses, hardening moduli) are known. 
Particularly, the approach allows to model the deformation of shape memory alloys in 
different regimes of loading from the unique positions. 

Experimental study of the influence of plastic strain on the shape memory 
effectofNiTi[2*] 

The material utilized in this study was near equiatomic NiTi wires in both the as-received 
condition and after annealing at 850°C for 30 min. A differential scanning calorimeter (DSC) 
was used to determine the transformation temperatures and latent heat for the initial condition 
of the specimen. The mechanical loading portion of the test consisted of an isothermal tensile 
loading, at a temperature above austenite finish, that imparts a measurable plastic deformation 
into the specimen, as seen in the stress vs. strain curve of Fig. 13. After loading, the specimen 
was heated in a stress free condition to separate the plastic strain from any stress-induced 
martensite that may have remained from the mechanical loading. This is followed by a 
thermal cycle, under a constant applied stress, resulting in a strain vs. temperature 
relationship, Fig. 14, from which the phase transformation characteristics of start and finish 
transformation temperatures and transformation strain can be determined. The sequence of a 
mechanical loading followed by thermal loading was then repeated to observe a change in the 
phase transformation characteristics due to the increased level of plastic strain. This entire 
process was then repeated with the isothermal mechanical loading at a temperature below 
martensite finish. This was performed to distinguish between the effects of plasticity 
developed during phase transformation and plasticity developed during martensitic 
detwinning. 
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Fig. 13 Stress vs. Strain for as-received SMA wire at T> Af 
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Fig. 14 Strain vs. Temperature at 25 MPa after 9.0 % total plastic strain 
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Fig. 15 Dependence of phase transformation temperatures 
due to the previous plastic deformation. 
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Fig. 16 The transformation temperature start and finish 
differential due to the previous plastic deformation. 



The following results represent a complete series often mechanical and subsequent 
thermal loadings at a temperature above austenite finish, Af. Fig. 15 demonstrates influence of 
plastic deformation on the characteristic temperatures of the phase transformation, measured 
from tests similar to Fig. 14 for an as-received SMA wire. This data demonstrates that the 
plastic strain significantly effects the martensitic transformation temperatures and has a lesser 
impact on the austenitic transformation temperatures. Fig. 16 quantifies the impact of the 
plastic strain on the transformation temperatures showing that differential between the 
martensitic start and finish temperatures grow at a rate more than double that of the austenitic 
start and finish temperatures. 
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Modelling of martensite accomodation effect on mechanical behavior of shape memory alloys. 
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An approach has been presented to account for micro plastic deformation and stress produced by accommodation of 
martensite. This has made possible to describe such phenomena as incomplete recovery of strain, strain accumulation at 
thermocycling and repeated two-way shape memory effect. Results of modelling are in good qualitative agreement with 
experimental data. 

Introduction 
At present the structure-analytical theory of strength (Likhachev and Malinin, 1993) is successfully used to describe the 
mechanical behavior of alloys possessing the martensitic channel of non-elasticity. This theory postulates the deformation 
law on the microlevel, and the macro strain is calculated by neutralization of all micro strains related to the volumes with 
different crystallographic orientations and parameters of the transformation. Calculations have shown that this approach 
well describes the transformation plasticity, shape memory, pseudoelasticity and some other properties. However there has 
not been achieved a satisfactory description of shape memory alloys (SMA) behavior at cyclic temperature variations (the 
decrease of strain underrecovery with the number of cycles) and other properties, due to micro plastic strains produced at 
the growth of martensitic crystals, among them the repeated shape memory effect (Likhachev et al., 1987). The present 
work is an attempt to introduce into account this type of micro plasticity. 

Model 
The averaging procedure as in the work of Erglis et al., (1995) has been organized in a way to reflect the grain structure of 
the material. We have assumed that in each of l,2,...,fi>,...,/2grains of the polycrystalline object N crystaUographically 
equivalent martensitic variants can appear. If the matrix D of the deformation due to the transformation by one of the vari- 
ants is known, the corresponding matrices Dn for other variants can be found by rotating D by the operators Pn belonging 
to the cube symmetry group: 

D„=P„PP„-1,   n = l,...,N. (1) 

The volume fraction of martensite in a grain is equal to 

<D-=±jr<D„, (2) 

For simplicity ÖSr, Ön, s8r, etc here and further are written instead oiO^fca), Ön(a>), e£r(a>), etc. Here the quantity 
(l/N)On is the volume fraction of the «-th variant of martensite in the considered grain. 

In each grain the average strain sST accumulated in the course of the transformation related to the crystallographic 
basis is 

*g'=^i>«A,> (3) 
The macroscopic strain d"1 of the specimen due to the transformation we obtain by reducing matrices dP" (a) to the labo- 
ratory basis and averaging on all the grains: 

em =±-iR„e*:R-a\ (4) 

where R(co) is the rotation matrix transforming the laboratory basis into the basis of grain ox * 
To formulate the law of variation of Ön we consider the thermodynamical equilibrium of the two-phase austenite- 

martensite system. We introduce the thermodynamic force Fn
f which is the difference of specific Gibbs energies of 

martensite and austenite. It can be split into thermal Fn^ and mechanical Fn
mec^ parts: 

pnt = Fntem + F^nech     Fn
tem = (T-T^q^,     Fn™ech = T..Dn (5) 

Here T0 is the temperature of the equilibrium of the two phases when there is no stress, qo is the latent heat (qo<0), T is 
the stress and •• denotes the contraction of tensors. Introducing the effective temperature Tn =T+ (T^/q^ v-Dn, we get 
the expression for Fy} comprizing both thermal and mechanical components: 



Fnt = (T*-T0)iqc/T0). (6) 

It is generally assumed that a moving interface overcomes a resistance, due to the energy of martensite crystals nu- 
cleation and other barriers. We shall refer to the force responsible for the hysteresis as to the friction force Fyfr and assume 
that it has a constant absolute value and opposes the movement of a phase boundary: 

F/= li^lsign^Ö^ (7) 

(we do not put minus sign in the right part of (7) because of the form in which equilibrium equation (9) will be written 
further). Besides Fjfr, a resistance force Fn due to interphase stresses arises when a martensite crystal is growing. We 
postulate as the first approximation that this force is proportional to On : 

Fn = GmOn, (8) 

where Gm is a constant. We note that, reflecting the kinetics of the transformation, equation (8) applies both to cases when 
martensite grows and when it shrinks. At the thermodynamic equilibrium there is the balance of forces: 

Fy} = Fn + Frfr. (9) 

When law (8) is specified constants I Ffr I and Gm can be determined from the kinetics of the martensitic transformation 
when no stress is applied : 
(a) at T* = Ms  On = 0 and from (6) — (9) we get | Ffr \ = (-qd)-(Af-Ms)/(Af+ Ms); 
(b) at T* = Mf 6n = 1 and from (8), (9) it follows that Gm = (-^o)-2(Ms -Mß/(Af+ Ms) . 

If we accept for phase equilibrium temperature an estimation TQ= (Af+ MS)I2 then we may rewrite the last formulas as 

1^1= ^0)iAf-Ms)/(2T0) , Gm =(^0)-( Ms -MßlT0 . 
Equation (3) one can consider as a decomposition of the strain sSr relative to some generalized basis {Dn} with com- 

ponents 6n and which we therefore shall interprete as the measures of strain. As the micro plastic strain s mP caused by the 
accommodation of martensite is connected with the same martensite crystals as the phase strain, we postulate that s mP can 
be expressed in the form similar to (3). 

— f ®ID„ (10) mp 
8        N^ ■"   n = l 

where Oyf is the measure of the micro plastic strain produced at the accommodation of crystals, belonging to the «-th vari- 
ant of martensite in a given grain. 

As the accommodation leads to a partial relaxation of interphase stresses, we assume that the resistance force Fn de- 
creases by the quantity GmÖrP. So we must change equation (8) for resistance force to 

Fn=Gm(0n-OnP) (11) 

We note that after (11) has been accepted instead of (8) formulas (a) and (b) for | Ffr \ and Gm are no more valid as 
the kinetics of the transformation is different when martensite accomodation takes place. 

To obtain an evolution for ÖfP we assume that its variation dÖyP is proportional to that of the quantity of martensite 
dOn and it occurs when the force Fn exceeds some yield limit F^: 

dOyf = k d<t>n H(\ F„\ -Fy?) H(dF„signFn), (12) 

where H is the function of Heaviside, k is the coefficient characterizing hardening. If k = 0 there is no micro plasticity, if k 

-» 1 there is ideal micro plasticity without hardening . As the resistance force Fn   grows (decreases) only at the growth 
(decrease) of martensite, which in its turn can occur only at the growth (decay) of the thermodynamic force Fn

f, we have 
sign(dFn) = sign(o?Fn0 and 

H(dFnsignFn)= H(dFntsignFn). (13) 

Substituting (11) into (9), passing to differentials and using (12 ) and (13 ) we arrive at: 

d0n = dFjl {Gm[\- kH{ | F„ I -Fr?)H{dFnt signF«)]} (14) 



Next we must take into account that micro plastic strain is accompanied by the hardening of material. To do this, as it is 
done in the classical theory of plasticity, we assume that the yield limit grows at the same rate as the resistance force which 
increment is equal to that of the thermodynamic force. 

dFJ = dFrf H{\ Fn\ - F„y)H(dF,fsignF„). (15) 

+ *.'). (16) 

To get the initial conditions we use the fact that at temperatures above Af and in stress-free state no micro deformations 
have begun and for all martensite variants we have  Fn

y= F0
y= const, Off - On= 0. 

When microplasticity is taken into account, the strain in a grain is calculated as 

EP=-tD „(0„ 

and the total macro strain is delivered by averaging (4). Relations given above can be reduced to a system of Q-N ordinary 
differential equations, which have been used to model the behavior a specimen made of an alloy of TiNi type containing 
120 grains of different pseudo-random orientations. The following values of material constants have been used: Mf 
= 280 K, Ms = 300 K, As = 340 K, Af= 360 K, To = 330 K, qo = -150 MJ/m3. The value F$> = 13 MPa has been chosen in 
such a way that microplasticity could take place at cooling of specimen stressed by 30 MPa. Parameter k has been varied. 
Calculations have been performed for cases of pure shear and uniaxial tension. Heat expansion has not been taken into ac- 
count. 

Modelling of cyclic loading 
Microplastic deformation at accommodation of martensite strongly influences mechanical behavior of shape memory 

alloys and especially at cyclic variations of temperature or stress. Because of this we have chosen to model strain accumu- 
lation and recovery by a specimen loaded with a constant stress of 100 MPa and subjected to temperature cycles through 
the full interval of the phase transformation. Fig.l presents the kinetics of this process for k = 0.4. Maximum strain satu- 
rates, strain unrecovered in a cycle decreases and the hysteresis loop stabilizes in approximately 20 cycles (Fig.2). 

Fig.l Strain vs. temperature dependence at 
thermocycling in the full interval of the 
martensitic transformation under the stress 
of 100 MPa. Numerals on the plot indicate 
numbers of cycles. 
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Fig.2. Calculated strain at a temperature below Mf (a) and the unrecovery of the strain (b) in an N-th cycle. 
Thermal cycling was carried out through the full interval of the martensitic transformation under the stress of 
100 MPa symbols in fig.2b correspond to the values of k, given in fig.2a. 

An important place in the studies of the work ability of SMAs is occupied by the following thermomechanical cycle: cool- 
ing of a sample from austenite to martensite under some load P, application of an additional load Q, heating to a tempera- 
ture higher than Af and removing the additional load Q to have the initial load P. Figures 3,4 show the result of such nu- 
merical experiment when P = 100 MPa, Q = 200 MPa. Stabilization of the loop in this case is also achieved in about 20 
cycles. Strain unrecovered in a cycle becomes small and almost constant. The maximum strain accumulated up to the JV-th 
cycle slowly grows, these results are in a good agreement with the data of the direct experiment (Belyaev et al.,1987). An 
application of an additional load Q at a low temperature causes no unleastic strain as the stress produced by P+Q is insuffi- 
cient for the reorientation of martensite. As the temperature rises, the reorientation limit stress decreases. At some tem- 
perature lower that Af the reorientation of martensite starts. Then a typical "hump" appears on the strain recovery curves in 
fig.3. 

Fig. 3. Calculated strain versus tempera- 
ture diagram at thermocycles with cooling 
under the stress 100 MPa and heating un- 
der 300 MPa (torsion). Numerals indicate 
numbers of cycles. 
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Fig. 4. Strain unrecovery (a) and maximum strain (b) as function 
of the number of thermocycles depicted in fig. 3. 

Modelling of repeated two-way shape memory. 
One of the properties of SMAs which until now could not be satisfactorily described in the scheme of the structure- 
analytical model is the repeated two-way shape memory (Likhachev et al., 1987) formed by cooling under a stress or by 
active straining in martensite. The mechanism of this phenomena may lie in the appearance of micro stress fields as the 
result of the incompatible plastic strain accompanying the growth of martensite crystals. Figures 5 and 6 present the results 
of modelling of this effect. 
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Fig. 5. Calculated strain versus temperature diagram at 
cooling and heating under 100 MPa (curve 1), unloading 
and a stress-free thermocycle (curve 2). 
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Fig. 6. Strain versus temperature diagram of active 
deformation of a sample in martensite state and un- 
loading (curve 1), heaning (curve 2) and subsequent 
stress-free thermocycle (curve3). 

The model demonstrates a reversible strain variation which corresponds to experimental data (Likhachev et al., 1987). Ac- 
cording to existing notions (Kuzmin, 1980; Funakubo et al.,1987) plastic deformation at martensite accommodation plays 
an important role in training of the material by thermocycling under a load, fatigue damages, formation of eigenstresses 
responsible for adaptation of the material and formation of the repeated two-way shape memory. The last thesis is con- 
firmed by the fact that the repeated shape memory appears only after a strong enough straining of the object by a load ex- 
ceeding a critical level when there is no complete strain recovery. 

At the same time all the previous considerations were mostly pure qualitative and did not allow a passage to engineer- 
ing calculations. The proposed model sets a formal ground for such notions and the agreement of calculated results with 
experimental ones confirms the validity of this approach. As the result it became possible to model thermocyclic training 
and repeated two-way shape memory. Calibration of the material constants allows to obtain valid results for specific alloys. 
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ABSTRACT 
An account of crystallographic features of fcc<-»hcp transformations as well as of plastic accommodation 

of martensite has allowed to describe accumulation of strain under a constant stress at cyclic variations of tem- 
perature. The model also gives the recovery of this strain at subsequent thermal cycles when the stress is re- 
moved. 

Keywords: FeMn, martensitic transformation, modelling, plastic accommodation, plasticity, thermocycles, 
shape memory effect, unelastic strain. 

1. INTRODUCTION. 
One of the specific features of fcc«->hcp transformations is the multi-variance of both direct and reverse 

transformations '-2. The result of it is that specimens loaded by a constant stress experience deformation when 
they undergo either of the transformations. Thus, considerable strain can be accumulated at thermal cycles. 
Large part of this strain is reversible and can be recovered at further cycles after the stress is removed '. This fact 
suggests that the strain is due to transformations rather than to dislocation movement. Strain accumulation at 
thermocycles can be described by the structure-analytical theory of strength M which is distinguished by two 
ideas: (1) the existence of limits of the size of growing martensite crystals and (2) the possibility that the strain 
of a martensite crystal at the reverse transformation is not, in general, opposite to the strain which this crystal has 
undergone at the direct transformation. The model based on only these two features predicts absolutely symmet- 
rical behavior of a loaded sample in heating and in cooling. An attempt to account for an asymmetry has been 
made in 5. However, approaches 4-5 did not take into account microplastic strain arising at the growth of marten- 
site crystals and leading to a partial accommodation of martensite and relaxation of interphase stresses. Because 
of this drawback the stabilization of the deformation of the model material occurs in 3 - 5 cycles rather than in 
several dozens as in an actual experiment. Strain recovery at thermal cycles without stress can not be described 
either. The way to account for microplastic deformation in alloys with transformations of TiNi type has been 
suggested in6. In the present work an attempt has been made to apply this methodology to alloys with fee o hep 
transformations. Results of simulation of their mechanical behavior at thermal cycles obtained by the mentioned 
models are shown. 

2. MODEL WITH MARTENSITE CRYSTAL SIZE LIMITATIONS 
In consistence with the ideas (1) and (2) the equation determining the evolution of the amount of martensite 

<!>„ (n=l,...,N) belonging to any of the orientation variants of lattice deformation Da should be written in the form 

0 ZU  
M-M H(-rn)H{i - 0M)H{0° - 0„)H[MS - 0„(MS -M,)- T;] - 

the first term answers for the direct and the second for the reverse transformation. Tn* = T+(T()/qo)(x:D ) is 
the effective temperature for the n-th variant; Ms, Mf Af, As are the characteristic temperatures of martensitic 
reactions; H is the Heaviside's function (#(0)=1); OM =(\IN) Z<5„ is the volume fraction of martensite obtained 
by averaging on all variants; dot denotes time derivative; x is the stress tensor and qo (normally negative) is the 
latent heat of the transformation. Multiplicands //(0°-<Dn) and #(<Dn-<DH) show that direct and reverse transfor- 
mations respectively are forbidden when the amount of martensite of the «-th variant is greater than <D° or 
smaller than cDH. To reflect the second idea we put OH<0 allowing negative values for <D„ meaning that amount 
of austenite recovered from martensite by deformation — Dn exceeds the amount of martensite previously ob- 



tained by deformation. In this model N is the number of all variants in all the grains. Macro strain is obtained by 
averaging: 

e = (l/A9E <&„£>„. (2) 
Here integral should be used for continuous distribution of variants orientations. According to 6 satisfactory re- 
sults are obtained with <I>0=5, <!>"= -4. Besides in 4 it has been shown that a better agreement with experiments 
can be obtained when the statistic scatter of such parameters as the strain temperature hysteresis width and its 
center are taken into account. For modelling we took the following values of material parame- 
ters: <5°=5, <DH=-4, q0=-63 MJ/m3, Z>3/= D13 = 0,075 (all the rest Djk = 0), Mf= 320 K, 
Ms = 370 K, As = 470 K, Af= 520 K. Maximum deviations of the hysteresis width and center from their 
mean values were taken 75 K and 50 K respectively. All calculations were made for uniaxial tension. Elastic and 
heat expansion strains were not added. Typical diagrams of strain accumulation in a specimen at thermocycles 
across the interval 200 K - 620 K are shown in fig. 1. Strain grows both at the direct and reverse transformations, 
its amount accumulated in one cycle decreases. Number of cycles to stabilize the strain was the same for simula- 
tions shown in figs, la and lb, more cycles needed for bigger values of stress (fig.2). 
a b 

200 400 600 T.K 200 400 600 T,K 

Fig.l. Dependencies of strain in the model object under a dead load 150 MPa on temperature at 
thermal cycles between 200 K and 600 K with initial state in austenite (a) or martensite (b). 

These results qualitatively agree with direct observations of iron-manganese alloys 2. In an actual ex- 
periments more cycles are needed to reach stabilization. Besides, calculations have shown that tempera- 
ture Ms measured at the start of straining decreases (fig.3), this fact often explained entirely by the growth 
of the dislocation density7. 

Thus this approach has demonstrated the possibility of a satisfactory simulation of deformation at 
temperature variations. We note that only strain due to transformations was taken into account. 
N 

8r y T,K 
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200 400 G.Mna 
410. 

Fig.2. Dependence of the number of cycles 
to strain stabilization on stress at thermocycling 
across the interval of the transformation. 

0 2 4 6      N 
Fig.3. Temperature of the start of strain- 

ing versus number of thermal cycles under a 
constant stress 150 MPa. 

3. MODEL INCLUDING MICROPLASTIC DEFORMATION 

At fcc^hcp transformation one of {lll}fcc planes becomes (0001 )hcp by one of three shears 1/6 < 112 >fcc on 
each second plane making up A^ 12 variants of transformation strain tensor Dn and martensite quantities <D„ . 

At the reverse transformation each of three shears 1/3 < 1120 >hcp restores the initial orientation of austenite. 
Thus all variants can be divided into four triplets (zones) with parameters 



j     3z 

°,=ö Z0»'  '=1,2,3,4, (3) 
•* n=3z-2 

characterizing the amount of martensite belonging to a zone, (1/4) Q>z being the volume fraction of martensite of 
this zone. Parameters <E>„ themselves do not have physical meaning of martensite amounts as deformations Dn 

belonging to one zone produce martensite of the same orientation. Still <bn play the role of measures of the 
phase deformation. 

As it was mentioned above an incorporation into the model of microplastic strain caused by accommodation 
of martensite is necessary to reach a quantitatively correct modelling of cyclic dependencies. We postulate that 
microplastic strain can be presented in a form similar to the lattice transformation strain and introduce measures 
of this strain O^P so that the total micro strain ß in a grain is given by the formula 

ß = ^fJ(®n+K)Dn .      (4) 
To formulate the kinetics law for <bn we introduce the thermodynamic driving force 

K^-T^qJT,). (5) 
which is equal to the Gibbs potential change at the transformation of a unit volume of austenite into martensite 
of the rt-th variant. When transformation is in process a moving interface experiences a resistance because of 
energy barriers of martensite crystals nucleation and other obstacles. The corresponding force responsible for the 
existence of the hysteresis we settle to call the friction force Ffr and assume that it has a constant absolute value 
and hinders the transformation: 

Ffr=-\F'r\sign(AQ>„) (6) 

Another opposing force Fn is that due to the appearance of interphase stresses. It grows with d>„ and 
is relaxed by microplastic deformation O,/*. Thus we assume: 

F*=G.(*,-*i) (7) 
Gm is a material parameter. In terms of these forces thermodynamic equilibrium equation is 

K=Ffr
+Fn. (8) 

which we used to determine the conditions allowing the transformation. 
Evolution equation for <D„P we take in the form analogous to that in the classical theory of plasticity where 
driving thermodynamic force stands for the stress. Microplastic flow occurs when force F„ excesses a yield 
limit Fny and | Fn | continues to grow. Thus, when H(\F„\ -F„y) H(dFnsignFn)>0 we postulate 

dO„=(l/hm)dFn (9) 

with some module of microplasticity. Combining (7) and (9) we obtain an evolution equation for Ow when mi- 
croplastic flow is on: 

do-=-SirdF"H(^-F")H(dF>[^- (]°) mm 
One must keep in mind that microplastic deformation may be accompanied by hardening. To account for this we 
assumed that the yield limit increment dF„y is proportional to dO„P : dF„y = A'md<D„P {h'm is some extra 
material parameter). Prior to any plastic deformations Fny = F(p = const for all variants of martensite. 

In iron manganese alloys we have two extra conditions of transformation finish: direct transformation can 
not occur to make the volume fraction of martensite in a grain <Sf >1; martensite fraction in a zone (1/4) Oz can 
not become less than zero. Summarizing all this we arrive at a final form of the evolution equation: 

\Gm 
+g^H(\Fn\-F:)H(-dF:signFn) + H(Fn^ -\Fn\)]dFn + 

G h    ^Fn\-F:)H{^si^n)dF\H{l-F-)H{Fz), (ii) 
mm J 

For numerical simulations the initial value of the yield limit (^=10 MPa) was chosen such that micro- 
plasticity in cooling (and subsequent unrecovered strain in heating) took place when the stress was as small as 
10 MPa. The value of the microplasticity module hm was varied; h'm was taken equal to hm . Fig.4 presents the 
calculated by this model (for hm=2 MPa) diagram of strain evolution at thermal cycles as in fig.la, stabilization 
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Fig. 4. Strain dependence on tempera- 
ture at thermal cycles in the range 220 - 
620 K under a constant stress of 50 MPa 
(calculation). 

Fig. 5. Maximum strain accumulated by 
a model sample in N thermal cycles under 
stress 50 MPa for different values of module 
hm: 2(1), 5 (2), 7 (3), 65 (4) MPa. 

of the strain being more gradual. By adjusting of module  hm  one can obtain different rates of thermocyclic 
strain production (fig.5). The decrease of Ms observed at simulations is similar to that in fig.3 

Appearance of microplastic strain gives rise to some of internal stress which is obviously the cause of the 
experimentally observed 8 partial strain recovery at subsequent thermal cycles in an unloaded specimen. Some 
confirmation to this statement is supplied by the result of modelling shown in fig.6. Very intensive in some first 
cycles the recovery in a cycle then decreases. In previous works this effect was not possible to describe by 
means of the structure-analytical model. 

e,% Fig. 6. Strain dependence on temperature at 
thermal cycles without stress after preliminary 
treatment shown in fig. 4. 

220 320 420 520 620T,K 

In conclusion we may state that a satisfactory simulation of the cyclic mechanical behavior of alloys with 
fcc^hcp transformations is possible only with an account of the accommodation of martensite and microplastic 
deformation. 
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ABSTRACT 

Micromechanical modeling of the plastic deformation of austenitic titanium-nickel shape 
memory alloy poly- and monocrystals has been performed. The model assumes that the material 
consists of grains in which specific to this alloy slip systems become active when the shear stress 
reaches a critical value. The plastic flow goes on at stress the increase of which is determined by 
a hardening modulus. To find the parameters of the model existing experimental data on the 
plastic properties of monocrystals have been used. Calculated deformation diagrams of 
monocrystals with different orientations of the tensile axis show a good agreement with 
experiment. 



INTRODUCTION 

The behavior of shape memory alloys (SMAs) depends significantly on the internal 
structure of the material. In particular, plastic deformation shows influence on the quantitative 
characteristics and kinetics of martensitic non-elasticity, gives way to the formation of such 
specific effects as the two-way shape memory and training of the material at cyclic temperature 
variations (Likhachev, Kuzmin and Kamentzeva, 1987; Belyaev, Kuzmin, Likhachev and 
Kovalyev,1987; Airoldi, Ranucci, Riva and Sciacca,1995). Preliminary thermomechanical 
treatment allows to change purposefully the functional-mechanical properties of SMAs. That is 
why big attention is paid to the development of models allowing to calculate plastic deformation 
and predict its influence. Several works are devoted to the calculation of the dislocation plasticity 
arising at the growth of martensite crystals inside the austenitic matrix. It has been shown that 
accomodation processes are connected with such phenomena as the decrease of the phase yield 
limit at cyclic loading (Patoor, Siredey, Eberhardt and Berveillerl995), accumulation of 
irreversible strain at thermal cycling under a load or without it (Bo, Lagoudas, 1998; Evard, 
Volkov, 1999). The main principles of the calculation of the plastic deformation due to 
dislocation slip have been formulated in the book (Likhachev, Malinin,1993).. The present work 
is an attempt using the general ideas of this book to develop a model of the plastic deformation 
of polycrystalline TiNi specimen. 

THEORETICAL MODEL 

The mathematical object is an austenitic polycrystal consisting of grains numbered 1, 
2,..., co,..., Q, each grain having several slip systems. Any slip plane may be referred to one of 1, 
2,..., m,..., M types and 1, 2,..., &,..., Km crystallographically equivalent planes belong to each 
type. These planes may be obtained from one of them by rotations belonging to the point 
symmetry group of cubic lattice. 

Athermal plastic deformation sfa in a grain is the sum of the deformations on each of 
the slip planes in this grain: 

£o  -L2-,£o>     , (i) 
m=\ k=\ 

where   e£ m'     is the referred to the laboratory basis athermal deformation produced by slip on 
the £-th plane of the m-th type. 

Let eg? be the effective stress applied to a grain. Then the stress acting on the plane 
(m, k) has shear components which may be written as: 

%{m,k) _ A (m,k)A (*,*)    gr (*,*)      A („,*). (m,k)    gr 
31 P*      Aq\       Up<7> T32 Api      Aql      Gpq , (2) 



where Apq is the rotation matrix transferring the crystallographic basis of the grain to into the 
crystallographic basis of the (m, k) plane. We assume that dislocation slip starts when the 
intensity of the tangential stress on the slip plane 

reaches its critical value i.     ' ) : 
T{m,k) =xs(m,k) ^ 

Due to the tangential stress 

-C} = x<7-«(6XI8,3 +8,35M) + Tr)(5 A3 +5X35,2) (5) 

a shear strain is produces, having the components 

oa (m,k) __}_f-(m,k)  T31 na (m,k) _   1 r(m,/t)  T32 

where iß - ^^Ppq ppq is the intensity of the shear strain rate tensor on the plane 
(m, k). 

We assume that the flow stress xs(m'k) is the sum of an equilibrium value %s{m)e\ 
which is the same for all planes of the given m-th. type, and additions responsible for the 
deformation xs^m'k)def and latent hardening: 

s (m,k)  _     s (m,k) eg s (m,k) def   ,  n  V^    j (m,k) def 
x -X +T +CX^ , (7) 

m,k 

where CT is an empirical constant and the last term is due to the latent hardening connected with 
the possibility of simultaneous plastic deformation on several slip planes. This formula does not 
take into account the strain rate dependence of the flow stress. 

The component xs(-m'k)eq we shall write as follows: 

T«-.*>* =XW -K^\T,t^k))T, (8) 

where   K m {T,T^m'   )   is an empirical function specifying the temperature dependence and 

iF   may be a constant or a distributed quantity with some density \J/(m) (T(m)) . 
To calculate the evolution of the deformation hardening component of the flow stress 

%s(m, )def we assume mat the hardening modulus h(m) depends linearly on the amount of 

shear on the plane so that its rate   Vs {m'k) def  is equal to  h(m)t^m'k). Besides hardening there 



may take place some recovery processes which lead to the decrease of the flow stress with the 
rate which has an Arrenius-type dependency on temperature and that of power-type on the flow 
stress itself. Thus 

j.s(m,k) def __ fJm^im.k) _ a(T\(TS^m'k^ ^A'V 
(9) 

where q(T) = r{m)Qxp m 

V   kBTj 
> ^J

m , /"tv  are empirical constants, kß is the Boltsmann 

constant. 
From (4) we obtain that in the plastic state it holds: 

J<(m,k)  _^s(m)eq _j_ ^s (m,k) def   ,  Q  V"1 s (m,k) def 
(10) 

m,k 

Taking time derivative of (10), using (8) and (9) and neglecting the time derivative of the latent 
hardening addition to the flow stress we obtain that in the plastic flow state 

rsrs(m)eq p)Ts{m)eq 

dT 

or after some transformations 

P(T,tim'k)W^k) +h{m)t^k) =f^k) -K(m\T,t^k))f + q(T)(Ts(m'k)def)m^ . (12) 

For P(T,T^k)) = P(T),   K'm\T,t^k)) = K(
"> = const equation (12) becomes: 

where 
P(T)T(m'*^ + fi^T^"1'^ = f(-m'k^ -xsW) 

£j(*,*) =K(»»t-q{T){Ts(m'k)def)m<s. 

(13) 

(13a) 

Assuming moreover in (13) P(T) = 0, and using Heaviside's functions to formulate the flow 

condition (4) and the second flow condition of the growth of the difference T^m,k) - xs
0
{m'k), we 

arrive to the system of equations 

'tlm-k) =(Ä(m))_1[7;Cm**) -xs
0
(m'k)] 

•s(m,k)def _ i,(m)f>(m,k) = h(m)Tlm'k) - q(T){xs {m'k) def )™' 
(14) 

which solution allows to find the rate of athermal plastic deformation produced by the action of a 
given slip system. The deformation of the whole grain we get by taking the sum (1), and the 



macroscopic plastic deformation — by neutralization on all the grains constituting the 
polycrystal: 

" 0=1 
(15) 

where Ra is the rotation matrix transforming the laboratory basis into the crystallographic one of 
the grain <so. 

RESULTS OF MODELING 

The approach described above has been applied to model plastic deformation of austenitic 
titanium-nickel alloy. According to the investigations of plasticity properties of titanium 
nickelide monocrystals (Chumlyakov, Surikova and Korotaev,1996) dislocation slip occurres on 
the crystallographic planes of two types namely {110} and {100}. To clear out the contribution 
of either of these slip systems there have been carried out calculations of stress-strain 

a, MPa 

200 Ty=50 MPa 
1^=700 MPa 

{100}     {11°J 

■—        7~l 150 
{100}+{l10}   11 

100 / 
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 1 ■ 1 •-— 
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Fig.l. Calculated stress - strain diagrams of a 
model polycrystal, consisting of 20 grains 
when slip occurred on {100}, {110} and both 
of these planes. 

E,% 

diagrams of a polycrystal for the cases when only one or both of these system were active. Yield 
stress recovery processes have been neglected ( q(T) = 0 ), yield limits and hardening moduli 
have been taken equal for both slip systems. Typical result is presented in fig.l. Variation of the 
hardening modulus and yield stress allowed to approximate different experimental curves. It may 
be concluded that polycrystal plastic properties do not depend 
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Fig.2 .Experimental (1,2) (Chumlyakov, 
Surikova and Korotaev, 1996) and calculated 
(l',2') tensile diagrams of titanium nickelide 
monocrystals with the tensile axis oriented 
along <100> (curves 1,1') and <110> 
(curves 2,2') 

strongly on the number and orientation of cristallographic slip planes. The situation is different 
for monocrystals. Experimental data presented in the work (Chumlyakov, Surikova and 
Korotaev, 1996) shows that both yield limits and hardening moduli strongly differ and are much 
bigger for a slip on {110} planes. Rater good agreement with the experiment the present model 

shows whit the following values of    parameters: for planes  {100}   xseq= 70 MPa    , 

h(m) = 800 MPa and for planes {110} x'eq = 320 MPa , hW = 3000 MPa (fig.2). At the same 
time there is no agreement when the tensile axis has an orientation <011> probably because of 
the anisotropy of the flow stress for different directions in the slip plane which was not 
accounted in this work. 

Making the resume of this work we may note that the structure-analytical model of 
strength outlined by V.A.Likhachev (Likhachev, Malinin,1993) is a good tool to describe the 
plastic behavior of specific crystalline materials provided the mechanism of plasticity (slip 
planes, critical stresses, hardening moduli) are known. Particularly, the approach allows to model 
the deformation of shape memory alloys in different regimes of loading from the unique 
positions. 
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ABSTRACT: Fully annealed wires of NiTi are loaded mechanically under 
isothermal conditions until plastic deformation occurs. After unloading, a 
temperature cycle under a constant stress is applied to determine a relationship 
between the applied plastic strain and the phase transformation characteristics. 
Two sets of isothermal mechanical loadings are performed, with the first at a 
temperature below the martensitic finish temperature, and the second at a 
temperature above the austenitic finish temperature. 

INTRODUCTION: Unlike common ductile metals, plastic deformation in shape 
memory alloys can be created by phase transformations and can occur at relatively 
low stress levels. Along with the creation of the plastic deformation, other 
material properties under go significant changes with the accumulation of plastic 
strain. The austenite/martensite phase transformation characteristics of shape 
memory alloys have been shown in previous studies (Hebda and White [1995], 
Lim and McDowell, [1994], Liu and McCormick, [1990], McCormick and Liu,' 
[1994], Perkins and Bobowiec [1986], Perkins and Sponholz [1984]) to be related 
to the loading history of the alloy. Both thermal cycles, mechanical cycles and 
cold working have shown an effect on the phase transformation thermomechanical 
properties such as start and finish temperatures, transformation strain and latent 
heat of transformation. The growth of plastic deformation has been successfully 
modeled and predicted by Bo and Lagoudas [1998] during thermally induced 
phase transformations under constant applied stress. To further develop and verify 
this model, experiments are conducted to study the influence of mechanically 
induced plastic deformation on the characteristics of the austenite/martensite 
phase transformation. 



PROCEDURES, RESULTS AND DISCUSSION: The material utilized in this 
study was near equi-atomic NiTi wires in both the as-received condition and after 
annealing at 850°C for 30 min. A differential scanning calorimeter (DSC) was 
used to determine the transformation temperatures and latent heat for the initial 
condition of the specimen. The mechanical loading portion of the test consisted of 
an isothermal tensile loading, at a temperature above austenite finish, that imparts 
a measurable plastic deformation into the specimen, as seen in the stress vs. strain 
curve of Fig. 1. After loading, the specimen was heated in a stress free condition 
to separate the plastic strain from any stress-induced martensite that may have 
remained from the mechanical loading. This is followed by a thermal cycle, under 
a constant applied stress, resulting in a strain vs. temperature relationship, Fig. 2, 
from which the phase transformation characteristics of start and finish 
transformation temperatures and transformation strain can be determined. The 
sequence of a mechanical loading followed by thermal loading was then repeated 
to observe a change in the phase transformation characteristics due to the 
increased level of plastic strain. This entire process was then repeated with the 
isothermal mechanical loading at a temperature below martensite finish. This was 
performed to distinguish between the effects of plasticity developed during phase 
transformation and plasticity developed during martensitic detwinning. 

The following results represent a complete series of ten mechanical and 
subsequent thermal loadings at a temperature above austenite finish, Af. Fig.3 
demonstrates influence of plastic deformation on the characteristic temperatures 
of the phase transformation, measured from tests similar to Fig.2 for an as- 
received SMA wire. This data demonstrates that the plastic strain significantly 
effects the martensitic transformation temperatures and has a lesser impact on the 
austenitic transformation temperatures. Fig. 4 quantifies the impact of the plastic 
strain on the transformation temperatures showing that differential between the 
martensitic start and finish temperatures grow at a rate more than double that of 
the austenitic start and finish temperatures. 
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Figure 1 Stress vs. Strain for as-received SMA wire at T> Af 
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Figure 2 Strain vs. Temperature at 25 MPa after 9.0 % total plastic strain 
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Figure 3 Dependence of phase transformation temperatures 
due to the previous plastic deformation. 
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Figure 4 The transformation temperature start and finish 
differential due to the previous plastic deformation. 

CONCLUSIONS: In this study, experiments were performed to identify the 
effect of plastic deformation on the phase transformation properties of NiTi. Test 
results show that the martensitic transformation temperatures widen as the plastic 
strain increases in the material. These results are consistent to those found for 
plastic strain development under cyclic thermal loading with constant applied 
stress. 
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